From multi-ring to spider web and radial spoke: competition between the receding contact line and particle deposition in a drying colloidal drop.
نویسندگان
چکیده
Deposition morphologies of inkjet-printed colloidal drops are examined under various drying conditions, particle volume fractions, and particle sizes. Concentric multi-rings, radial spokes, spider web, foam, and island-like depositions are observed as a result of the competition between the receding contact line and particle deposition during drop drying. Experimentally measured multi-ring spacing, δR, shows good agreement with the model predicted linear correlation with the local ring radius R. The results also show that the instability near the contact line leads to the radial spoke and saw-toothed structures. The resulting wavelength of the radial structures, λ, satisfies λ ~ (3)√R and λ ~ 1/(3)√[1-RH], where RH is the relative humidity. A dimensionless parameter ξ, defined as the radial deposition growth rate to contact line velocity ratio, has been identified to determine the conditions under which the entire contact line can be pinned to leave a continuous ring deposit. Increasing the particle size while keeping the volume fraction the same is found to suppress the formation of the multi-ring deposition, due to a smaller number of particles available to pin the receding contact line.
منابع مشابه
Classifying dynamic contact line modes in drying drops.
Although the evaporation mode of sessile droplets is almost universally characterized as either constant contact radius (CCR) or constant contact angle (CCA), here we investigate two alternatives where the contact line speed is either constant or inversely proportional to the droplet radius. We present supporting evidence from our experiments on poly(ethylene oxide) (PEO) polymer solutions and ...
متن کاملSelf-Assembly of Single-Walled Carbon Nanotubes into a Sheet by Drop Drying
Single-walled carbon nanotubes (SWNTs) are currently the focus of extensive interdisciplinary studies because of their unique physical and chemical properties and potential electronic applications, for example, in making sensors and fieldemission devices. Processing of SWNT-based materials into engineered macroscopic materials is still in its infancy; the most successful methods so far have bee...
متن کاملSurfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops.
The influence of the small ionic surfactant sodium dodecyl sulfate (SDS) on the evaporation of drying colloidal droplets is quantitatively investigated. The addition of SDS leads to a significantly more uniform deposition of colloidal particles after evaporation (i.e., the so-called "coffee-ring effect" is dramatically altered). We understand this phenomenon in the context of circulating radial...
متن کاملEvaporation-driven ring and film deposition from colloidal droplets
Evaporating suspensions of colloidal particles lead to the formation of a variety of patterns, ranging from a left-over ring of a dried coffee drop to uniformly distributed solid pigments left behind wet paint. To characterize the transition between rings and uniform deposits, we investigate the dynamics of a drying droplet via a multiphase model of colloidal particles in a solvent. Our theory ...
متن کاملCrossover from the coffee-ring effect to the uniform deposit caused by irreversible cluster-cluster aggregation.
The coffee-ring effect for particle deposition near the three-phase line after drying a pinned sessile colloidal droplet has been suppressed or attenuated in many recent studies. However, there have been few attempts to simulate the mitigation of the effect in the presence of strong particle-particle attraction forces. We develop a three-dimensional stochastic model to investigate the drying pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Soft matter
دوره 10 25 شماره
صفحات -
تاریخ انتشار 2014